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Abstract. The density-dependent relativistic hadron (DDRH) field theory proposed recently is extended to
investigate the longitudinal response function and the Coulomb sum rule in quasielastic electron scattering
in the relativistic random phase approximation (RPA). The results in the DDRH model are compared with
those in other models systematically. It is found that meson effective masses induced by the nonlinear terms
in the nonlinear Walecka model should be used to obtain the meson Green’s functions when the longitudinal
response function and the Coulomb sum rule are calculated. The effects of the δ and ρ mesons are clearly
shown in quasielastic electron scattering, and the isospin-dependent attractive potential between nucleons
due to the exchange of the δ-meson cancels the isospin-dependent repulsive contribution of the ρ-meson to
a certain extent. The obtained results in the DDRH model are in good agreement with experimental data
except for the Coulomb sum rule in 208Pb.

PACS. 25.30.Fj Inelastic electron scattering to continuum – 21.65.+f Nuclear matter – 21.10.-k Properties
of nuclei; nuclear energy levels – 21.60.-n Nuclear structure models and methods

1 Introduction

Relativistic mean-field models based on nucleons and
mesons as their effective degrees of freedom are success-
ful in describing nuclear matter and finite nuclei [1]. The
Walecka-I model contains fields for nucleons and scalar σ
and vector ω mesons. The Walecka-II model is an exten-
sion of the Walecka-I one with the inclusion of the isovec-
tor ρ-meson. Since the Walecka-I (II) model gives too large
a value of nuclear-matter incompressibility at the satura-
tion density, in order to overcome this shortcoming of the
Walecka-I (II) model, the nonlinear σ or ω terms were in-
troduced into the Walecka-I (II) model, and the so-called
nonlinear Walecka model was constructed [2]. With the
model parameters calibrated to the many-body properties
of nuclear matter at the saturation density, the nonlinear
Walecka model has been applied to nuclear matter and
finite nuclei quite successfully [3].

The density-dependent relativistic hadron (DDRH)
field theory was proposed recently by Hofman, Keil, and
Lenske [4], where, in addition to the σ, ω, and ρ mesons,
the isovector-scalar δ-meson is included. Meanwhile, the
meson-nucleon vertices in the DDRH model are deter-
mined in such a way that the scalar and vector potentials
reproduce those of the Dirac-Brueckner (DB) calculation
at each density of nuclear matter exactly. In this way, the
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analytic density-dependent meson-nucleon vertices in the
DDRH model have been obtained. Since the interaction in
the DB theory is determined by fittings to NN -scattering
data, the parametrization of the DDRH model is indepen-
dent of any phenomenological fit to data of the nuclear
many-body effect, i.e., the feature of the DDRH model
is no free parameters, and has a solid foundation for rel-
ativistic nuclear many-body physics on the microscopic
level. Intensive investigations have shown that the DDRH
model can be used to describe exotic nuclei [4], the proper-
ties of neutron star matter [5], kaon condensation in dense
matter [6,7], etc., and becomes one of the successful rela-
tivistic nuclear models.

Quasielastic electron scattering is a useful approach to
probe the properties of nucleons in a nucleus, and pro-
vides one of the feasible ways to examine in detail the-
oretical nuclear models. The linear Walecka-I (σ, ω) [8],
and Walecka-II (σ, ω, ρ) models [9] have been applied to
study the nuclear response function in quasielastic elec-
tron scattering in the local density approximation [10].
Also, the calculations of the longitudinal response func-
tion in quasielastic electron scattering at a relatively high
momentum transfer have been performed recently in the
nonlinear Walceka model [11]. However, how the density-
dependent relativistic nuclear models used quite success-
fully in nuclear matter and finite nuclei, such as the DDRH
model and the TW model, describe quasielastic electron
scattering is still lacking.
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In this paper, the DDRH model is extended to inves-
tigate the target nuclear-structure effects on quasielastic
electron scattering in the relativistic random phase ap-
proximation (RPA). The results in the DDRH model will
be compared with those in the density-dependent relativis-
tic nuclear model developed by Typel and Wolter (also
referred to as the TW model) [12], and the linear and
nonlinear Walecka models [1,3]. The roles of the nonlin-
ear terms in the nonlinear Walecka model as well as the δ
and ρ mesons will be discussed.

The rest of this paper is organized as follows. In sect. 2,
a brief review of the models and the basic formulae are
given. The results and discussion are presented in sect. 3.

2 The formulae

The Lagrangian densities in the various relativistic nuclear
models can be unified as
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where ψ stands for the nucleon field, Aµ is the photon

field. σ, ωµ, ~δ, and ~ρµ are for σ-, ω-, δ-, and ρ-meson fields.
Here ωµν = ∂µων − ∂νωµ, ~ρµν = ∂µ~ρν − ∂ν~ρµ, and Aµν =
∂µAν − ∂νAµ. The double-differential electron scattering
cross-section is expressed as [9]
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where the σM is the Mott cross-section, q = (ω, |q|) is
the four-momentum transfer of the electron to a target
nucleus, SL and ST are the longitudinal and transverse
response functions. The polarization tensor as the ground-
state expectation value of a time-ordered product of elec-
tromagnetic current operator is

iΠµν(q) =

∫

d4xeiqx〈ψ|T(Ĵµ(x)Ĵν(0))|ψ〉 . (3)

The electromagnetic current operator Ĵµ(q) is defined as

Ĵµ(q) =

∫

d3xeiq·x ˆ̄ψ(x)

×
(

F1(q
2)γµ + F2(q

2)
κτ
2M

iσµνqν

)

ψ̂(x) , (4)

where ˆ̄ψ and ψ̂ are nucleon field operators, M is the nu-
cleon bare mass. σµν ≡

1

2
i[γµ, γν ]. The proton and neu-

tron anomalous magnetic moments are κp = 1.793 and
κn = −1.913. The Dirac and Pauli form factors for nucle-
ons F1(q
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The longitudinal part ΠRPA
L

of the meson polarized
self-energy induced by the electromagnetic current opera-
tor Ĵµ(q) in the RPA can be written as

ΠRPA

L = ΠH

L + δΠRPA

L,is + δΠRPA

L,iv , (6)

where δΠRPA
L,is and δΠRPA

L,iv stem from Ĵµ
is
(q) and Ĵµ

iv
(q)

which represent the isoscalar and isovector parts of Ĵµ,
respectively. The formulae of ΠH

L
and δΠRPA

L,is can be de-

rived as in ref. [10]. Similarly, we can obtain the formulae
of δΠRPA

L,iv , in which the contributions of the isovector (ρ)

meson and the isoscalar (δ) meson are considered in the
DDRH model.

In the local density approximation, the relation be-
tween the longitudinal response function SL(q) and the
longitudinal part of polarized self-energy ΠL(q) is

SL(q) =
1

π

∫

d3rImΠL(q) . (7)

Obviously, ImΠL(q) in a target nucleus depends on the
space coordinate r because the proton and neutron den-
sities ρp,n(r), and the nucleon effective mass M ∗

p,n(r) are
r-dependent. ρp,n(r) and M

∗
p,n(r) in a target nucleus can

be obtained consistently by solving nonlinear coupled dif-
ferential equations for finite nuclei in relativistic mean-
field approximation. The detailed numerical techniques
and basic formulae for finite nuclei are given in ref. [4]
for the DDRH model, [12] for the TW model, [1] for the
linear Walecka model, and [3] for the nonlinear Walecka
model. The extracted r-dependent physical quantities are
then used to calculate the longitudinal response function
and the Coulomb sum rule. It should be noted that the
effects of finite nuclei entered fundamentally in this way
are parameter free. Meanwhile the dynamical properties
for each model are taken into account completely.

The Coulomb sum rule is defined as [8]

C(|q|) =

∫ |q|

0

dωSL(q) . (8)

3 Results and discussion

Firstly, we discuss the roles of the nonlinear terms in the
nonlinear Walecka model with Tm1 as a representative
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Fig. 1. Longitudinal response function (panel 1(a)) and
Coulomb sum rule (panel 1(b)) for 40Ca. Experimental data
are taken from ref. [14].

parameter set. The nonlinear terms affect not only the
local physical quantities ρp,n(r) and M

∗
p,n(r) for relativis-

tic mean-field calculations of a target nucleus, but also the
meson Green’s functions. Normally, one of the key steps in
analyzing quasielastic electron scattering is to use the me-
son bare masses to calculate the meson Green’s functions
in the relativistic mean-field approximation. However, it
has been shown in our calculations that the meson effec-
tive masses instead of the meson bare ones should be used
to calculate the meson Green’s functions in the nonlinear
Walecka model. This process can be carried out by replac-
ing the meson bare massesm2

σ andm2
ω by the meson effec-

tive ones m∗2
σ = m2

σ +κσ0 +
1

2
λσ2

0 and m∗2
ω = m2

ω + 1

2
ξV 2

0 ,
where σ0 and V0 are the expectation values of σ- and
ω-meson fields in a nucleus ground state. For detailed
comparisons we have plotted in fig. 1 the longitudinal re-

sponse function at q = 410MeV and the Coulomb sum
rule with the meson bare (labelled by Tm1(D0)) and ef-
fective (labelled by Tm1) masses for 40Ca. It is evident
in fig. 1(a) that the curve with Tm1(D0) has a strange
bump at q ∼ 25 MeV. Furthermore, the trend of the
curve with Tm1(D0) in fig. 1(b) does not follow the ex-
perimental data. These results illustrate that the curve
with Tm1(D0) is unrealistic in comparison with that with
Tm1 since the meson bare masses (i.e. not the meson ef-
fective ones) are used to calculate the meson Green’s func-
tions for the results with Tm1(D0). The shortcoming of
the results with Tm1(D0) can also be understood from
the value of the Landau parameter F0 which must satisfy
F0 > −1 [15]. For M∗/M = 0.64 at the saturation den-
sity of nuclear matter in the nonlinear Walecka model, we
obtain F0 = −2.75 < −1 for the results with Tm1(D0),
while F0 = −0.07 > −1 for the results with Tm1. The
former case is unreasonable, and leads to the unstability
of nuclear matter, thus we will give up the results with
Tm1(D0) in our following calculations.

The results in the various models at |q| = 410MeV
and |q| = 550MeV for 40Ca, 48Ca, and 56Fe are presented
in figs. 2, 3, and 4, and those at |q| = 400 MeV and
|q| = 550MeV for 208Pb in fig. 5. For 40Ca, 48Ca, and
56Fe it has been shown that the curves of the longitudinal
response function and the Coulomb sum rule in the
various models have similar shapes. At |q| = 410MeV
(see figs. 2(a), 3(a), and 4(a)), the maximum values of
the curves occur at a similar energy transfer, and shift
to the left side compared with experimental data. While
at |q| = 550MeV (see figs. 2(b), 3(b), and 4(b)) the
maximum values of the curves are approximately located
at the same energy transfer as experimental data. These
results show that quasielastic electron scattering can
be described better in the relativistic mean-field theory
at higher momentum transfer than at lower one. The
results given by the DDRH model have a slightly higher
peak than those of other models. For the Coulomb sum
rule (see figs. 2(c), 3(c), and 4(c)) it is apparent that
the peak of the DDRH model is also higher than those
of other models. For 208Pb in fig. 5, the results of the
longitudinal response function are in good agreement
with experimental data. However, the results of the
Coulomb sum rule are not reproduced well at high
momentum transfers, which were also shown in ref. [16].
Considering the properties of isospin asymmetry in 208Pb
(i.e., N = 82, and Z = 126), the isovector-vector (ρ) and
isovector-scalar (δ) mesons are included in the DDRH
model in our calculations compared with those in ref. [16],
the discrepancy with experimental data for the Coulomb
sum rule in 208Pb still remains. These results imply that
the Coulomb sum rule in a heavy nucleus like 208Pb is
not explained well in relativistic mean-field theory.

The most important difference between the DDRH
model and other models is that the DDRH model contains
the δ-meson. In order to discuss the roles of the δ-meson
we have plotted, as an example, the longitudinal response
function at |q| = 410MeV and the Coulomb sum rule
for 48Ca in figs. 6(a) and (b). It is seen in fig. 6(a) that
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Fig. 2. Longitudinal response function and Coulomb sum rule for 40Ca. Experimental data are taken from ref. [14].

Fig. 3. Same as fig. 2, but for 48Ca.
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Fig. 4. Same as fig. 2, but for 56Fe.

Fig. 5. Longitudinal response function and Coulomb sum rule for 208Pb. Experimental data are taken from ref. [17].
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Fig. 6. Longitudinal response function (panel 6(a)) and
Coulomb sum rule (panel 6(b)) for 48Ca. Experimental data
are taken from ref. [14].

the maximum value of the curve with the σ, ω, ρ, and
δ mesons (solid line) lies between those with σ and ω
mesons (broken line) and with the σ, ω, and ρ mesons
(dotted line). This result is caused by the competition of
the isospin-dependent attractive (the δ-meson) and re-
pulsive (the ρ-meson) contributions. The net contribution
including both ρ and δ mesons cancels out. The roles of
both ρ and δ mesons are also shown in fig. 6(b). The curve
with the ρ-meson (i.e., σ, ω, ρ labelled by dotted line)
becomes lower due to the isospin-dependent repulsive
contribution of the ρ-meson, while the curve without the
ρ-meson (i.e., σ, ω labelled by broken line) is higher.
When the δ-meson is added, it is shown that the curve in

the DDRH model (i.e., σ, ω, ρ, δ labelled by solid line)
lies between those of curves with (dotted line) and without
(broken line) the ρ-meson.

4 Summary

The DDRH model is extended to study quasielastic elec-
tron scattering, and the obtained results in the DDRH
model are compared with those in other ones. It has been
shown that the meson effective masses due to the non-
linear terms in the nonlinear Walecka model should be
used to obtain the meson Green’s functions when the lon-
gitudinal response function and the Coulomb sum rule
are calculated. The process of quasielastic electron scat-
tering can be described well in the various relativistic
mean-field models except for the Coulomb sum rule in a
heavy nucleus like 208Pb. Finally, the roles of both δ and
ρ mesons that play in quasielastic electron scattering are
tested in the DDRH model. The isospin-dependent attrac-
tive (the δ-meson) and repulsive (the ρ-meson) properties
are clearly shown in quasielastic electron scattering.
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